Calgary Public Library

Essential computational fluid dynamics, Oleg Zikanov

Label
Essential computational fluid dynamics, Oleg Zikanov
Language
eng
Bibliography note
Includes bibliographical references and index
Illustrations
illustrations
Index
index present
Literary Form
non fiction
Main title
Essential computational fluid dynamics
Medium
electronic resource
Nature of contents
dictionariesbibliography
Oclc number
757395146
Responsibility statement
Oleg Zikanov
Review
"This book serves as a complete and self-contained introduction to the principles of Computational Fluid Dynamic (CFD) analysis. It is deliberately short (at approximately 300 pages) and can be used as a text for the first part of the course of applied CFD followed by a software tutorial. The main objectives of this non-traditional format are: 1) To introduce and explain, using simple examples where possible, the principles and methods of CFD analysis and to demystify the 'black box' of a CFD software tool, and 2) To provide a basic understanding of how CFD problems are set and which factors affect the success and failure of the analysis. Included in the text are the mathematical and physical foundations of CFD, formulation of CFD problems, basic principles of numerical approximation (grids, consistency, convergence, stability, and order of approximation, etc), methods of discretization with focus on finite difference and finite volume techniques, methods of solution of transient and steady state problems, commonly used numerical methods for heat transfer and fluid flows, plus a brief introduction into turbulence modeling. A solutions manual will be provided for instructor's use."--Jacket
Table Of Contents
Essential Computational Fluid Dynamics; Contents; Preface; 1 What Is CFD?; 1.1. Introduction; 1.2. Brief History of CFD; 1.3. Outline of the Book; References and Suggested Reading; I Fundamentals; 2 Governing Equations of Fluid Dynamics and Heat Transfer; 2.1. Preliminary Concepts; 2.2. Mass Conservation; 2.3. Conservation of Chemical Species; 2.4. Conservation of Momentum; 2.5. Conservation of Energy; 2.6. Equation of State; 2.7. Equations in Integral Form; 2.8. Equations in Conservation Form; 2.9. Equations in Vector Form; 2.10. Boundary Conditions; 2.10.1. Rigid Wall Boundary Conditions
Classification
Mapped to

Incoming Resources